Catch me, if you can:
The long path from reputation to trust

Karl Aberer
EPFL

joint work with
Zoran Despotovic, Le Hung Vu,
Thanasis Papaiaonnou
MOTIVATION
Trust in Online Systems

- No trusted authority
- Selfish behavior
- Examples
 - Peer-to-peer system
 - Social networks
 - Ecommerce sites
 - Internet gaming
Selfish Behavior

• Example P2P: to conserve
 – Own bandwidth
 – Own CPU cycles
 – Freeriding

• To exploit
 – Greedily consume other’s resources
 – ... before others can use that opportunity
Example of Selfishness

Freeriding in Gnutella [Adar, Hubermann 2000]

Cooperation needs to be built: *but how?*
Cooperation Based on Trust

• **Trust:** the extent to which a peer believes the other peer will cooperate
 – Gain is to be shared with the other peer
 – But the peer is exposed to a risk of loss
Cooperation Based on Trust

• **Trust**: the extent to which a peer believes the other peer will cooperate
 – Gain is to be shared with the other peer
 – But the peer is exposed to a risk of loss
Cooperation Based on Trust

• **Trust**: the extent to which a peer believes the other peer will cooperate
 – Gain is to be shared with the other peer
 – But the peer is exposed to a risk of loss
Cooperation Based on Trust

- **Trust model**: the way in which the above belief is inferred
 - Inference could be: if Bob cooperates with Alice then Bob will also cooperate with me with high probability
Cooperation Based on Trust

• **Trust model**: the way in which the above belief is inferred

 – Inference could be: if B cooperates with C then B will also cooperate with A with high probability
Cooperation Based on Trust

• **Trust model**: the way in which the above belief is inferred
 – Inference could be: if B cooperates with C then B will also cooperate with A with high probability
Cooperation Based on Trust

• **Trust model**: the way in which the above belief is inferred
 – Inference could be: if B cooperates with A then B will also cooperate with C with high probability

• **Reputation-based trust**: Inference based on the collective earlier actions of a peer:

 it’s reputation
Does it really matter?

• Example: eBay
 – eBay reputation profiles predictive of future performance [Resnick et al., 2002]
 – Prices positively correlated with the feedback [Melnik and Alm, 2002]
Overview

MOTIVATION

REPUTATION-BASED TRUST IN ONLINE COMMUNITIES

TRUST WITH RATIONAL PEERS

TRUST AND IDENTITY

CONCLUSIONS
REPUTATION-BASED TRUST IN ONLINE COMMUNITIES
The Path Towards Trust

Problem

Selfish Behavior

Countermeasure

Reputation
On-line Reputation

• Common characteristics
 – open community: interactions with different parties
 – rarely repeated interactions with the same party
 • Therefore need for recommendations of others
 – possibility to misbehave and misreport
The Path Towards Trust

Problem

- Selfish Behavior
- Manipulation of Reports

Countermeasure

Reputation
Model

- Peers provide services to other peers
 - Know other peers they interacted with
 - Store feedback w_i on interactions with peer i
 - Feedback on service and reporting
 - A social network (trust graph)
Social Networking Approach

• Compute global trust values t_j for peer j
 – By aggregating feedbacks
 – Weighting by the trust in the recommender
 – Similar to PageRank computation

$$t_j = \sum_{i \in \text{in}(j)} w_i \frac{t_i}{\sum_{k \in \text{in}(i)} t_k}$$

[Xiong, Liu TKDE 2004]
Social Networking Assessment

• Problems solved
 1. Automatic aggregation of reputation data
 2. Does not require central authority
 3. Possibility of misreporting considered

• Shortcomings
 – Costly (global) computation
 – Trust values have no further meaning but ranking
 – No distinction between propensity to provide poor service and to misreport
Probabilistic Estimation Approach

• Assume probabilistic peer behavior, eg.
 – $P[\text{peer } j \text{ performs service honestly}] = \theta_j$
 – $P[\text{peer } k \text{ lies when reporting}] = l_k$

• Probability of report y_k on peer j from peer k

$$P[Y_k = y_k] = \begin{cases}
 l_k (1-\theta_j) + (1-l_k)\theta_j & \text{if } y_k = 1 \\
 l_k \theta_j + (1-l_k)(1-\theta_j) & \text{if } y_k = 0
\end{cases}$$

[Despotovic, Aberer Journal of Computer Networks 2004]
Probabilistic Estimation Approach

• Maximum Likelihood Estimation
 – Determine \(l_k \) by checking reports on own performance
 – Collect all reports \(y_1, y_2, ..., y_n \) on peer \(j \)
 – Select \(\theta_j \) that maximizes the probability to obtain the observed reports

\[
L(\theta_j) = P [Y_1 = y_1] P [Y_2 = y_2] \cdots P [Y_n = y_n]
\]
Comparative Evaluation

• Precision in correctly assessing misbehavior

Maximum Likelihood Estimation

Social Networking
Comparing eBay and P2P

• Differences
 1. no centralized authority to manage and verify reputation information
 2. possibility to manipulate reports of others

• Question
 – Which methods do exist for efficiently and automatically managing reputation data in the absence of any centralized infrastructure?
Implementation Issues

• Variant 1: use trust graph as *unstructured overlay* network
 – Simple maintenance, high cost of retrieval of reports

• Variant 2: use a separate *structured overlay* network
 – Complex maintenance, efficient retrieval

• Additional problem: manipulation of stored reports and messages
 – Use replication of reputation data
Probabilistic Estimation Assessment

• Problems solved
 – Efficient trust computation
 – Trust values predict probability of cooperative behavior
 – Distinction between propensity to provide poor service and to misreport

• Shortcomings
 – Reputation-based trust detects malicious and selfish behaviors (signaling)
 – ... but does not consider rationality of agents (sanctioning – fostering honest behavior)
The Path Towards Trust

Problem

- Selfish Behavior
- Manipulation of Reports
- Strategic Behavior

Countermeasure

- Reputation
- Reputation of recommenders

Computational trust models for signalling
REPUTATION-BASED TRUST WITH RATIONAL PEERS
A Rational Agent

Reputation

Detection threshold
Rationality

• Actions of peers have associated utility
• Example: prisoners dilemma

• Main insights
 – One shot game: no cooperation (Nash)
 – Repeated game: cooperation – tit-for-tat (Axelrod)
• Common explanation of the concept of trust
Extended Model

• Model
 – Consumers provide feedback w_i on peer i’s service
 – Peer i has incentive to cheat:
 legal gain $u_i <$ illegitimate gain $u_i + v_i$

• Peer behavior
 – Honest peers never cheat
 – Malicious peers cheat probabilistically
 – Rational peers optimize their utility

[Hung, Aberer WI 2008, TAAS 2010]
Sanctioning

If \(t = 1 \) and \(w = 0 \) or \(t = 0 \) and \(w = 1 \):

3 Peer \(i \) is cheating!!!

Most recent feedback

Evaluate reliability \(t \)

of feedback \(w \)

using

computational trust model

If peer \(i \) has less than \(k \) cheating detections: ok!

Severe sanctioning mechanism!
Computational Trust Model

• may use several information sources
 – past rating behavior of the rater, past performance of sellers, trusted sources, own belief on environment’s vulnerability, relations between peers

• may use variety of statistical models/heuristics
 – probabilistic approaches, collaborative filtering, similarity of rater and own’ experience, clustering of ratings to isolate dishonest rater

• Accuracy measure (known to peers)

\[P[est+ | real-] < \varepsilon, \ P[est - | real+] < \varepsilon \]
Trust Accuracy vs. Cooperation

Theorem: if computational trust model sufficiently accurate and gains are bounded rational peers cooperate in all but the last Δ transactions.

Bounded gains ($u_* < u < u^*$, $v_* < v < v^*$)

$$\Delta = \max\{1, \left\lceil \frac{\ln[1 - \frac{v^* \varepsilon^k}{u^*(1 - \varepsilon + k - \varepsilon^k)}]}{\ln(1 - \varepsilon^k)} \right\rceil \}$$

$$\varepsilon < \varepsilon_{\text{max}}(k) = \frac{1}{1 + \sqrt[k]{1 + \frac{v^*}{u_*}}}$$
Incentive to Leave (Δ)

Example:
For $\varepsilon < 0.2$ and $k=1, 2$ peer will leave for the last 2 transactions
Emergence of Cooperation

- Cooperation is enforced if peers stay infinitely or long enough given ε sufficiently small
 - resilient against rating manipulation
 - malicious peers are eliminated

Example: For $\varepsilon = 0.2$ and $k=10$ peer will be accidentally blacklisted after 2^{22} transactions ...

... whereas a cheater will be eliminated after 2^3 cheats
Accuracy-cost Trade-off

- Presence of high quality dishonesty detector may prevent rating manipulation by rational sellers
- High accuracy implies higher implementation cost
- Combine two computational trust models
 - expensive/accurate dishonesty detector with probability c
 - trust the rating with probability $1-c$
- Result
 - With very low c rational peers still cooperate
Sanctioning: Assessment

• Considering rational behavior
 – Enforces cooperation of rational peers
 – Eliminates malicious peers
 – Permits to optimize computational cost for dishonesty detection

• Shortcomings
 – Requires shared, secure storage for reputation data
 – Requires stable and global identities (like all other reputation-based trust mechanisms)
The Path Towards Trust

Problem
- Selfish Behavior
- Manipulation of Reports
- Strategic Behavior
- Whitewashing

Countermeasure
- Reputation
- Reputation of recommenders
- Sanctioning
TRUST AND IDENTITY
Key Problem

The problem of trust is inherently linked to stable identification
How to prevent whitewashing?

• Remember: clients on eBay are willing to pay higher prices for reliable seller
 – 8.1% according to a study of [Resnick 2006]

• *Can this help?*

• Idea: sellers that stay longer in the system ask for higher prices
 – Makes it unattractive to leave the system for whitewashing

• *Does it work?*
Identity Premium

\[P(L) = u (1 - \Phi) + f(L) \]

- \(L \) lifetime of seller
- \(f(0) = 0, f \) monotonically increasing
- \(0 < \Phi < 1, \) initial price below original price \(u \)
Cooperation Enforcement

• **Theorem:** If the identity cost is sufficiently small there exists an identity premium function such that a rational provider will cooperate in every but the last interaction.

• Bound on identity cost and premium depends on
 – Accuracy of dishonesty detector
 – Potential cheating gain
 – Initial price
THEOREM 1. Given the provider selection protocol $S_k = \langle R, k \rangle$ where the dishonesty detector R has the misclassification errors α, β upper-bounded by $\varepsilon < 0.5$.

Consider any rational provider with N services to sell. Let $u_* \leq u \leq u^*, i = 1, ..., N$ be the original prices of the services sold by the provider in the i-th transaction. Suppose that the pricing scheme $P(\phi, f)$ is used, it follows that:

(i) If the identity cost ξ is small, the following identity premium ensures that cooperation is always the best response strategy of the provider in any transaction $i = 1, ..., N - 1$, for any $0 < \phi_i < 1$:

$$f(L) = \sum_{i=1}^{L} \lambda^{L-i} (\lambda u(1 - \phi_i) - \xi/\gamma) \text{ for } L > 0$$

(ii) For $\lambda \neq 1$ and providers sell services of the same standard price $u = 1, \phi_i = \phi, i = 1, ..., N$, if the identity cost $\xi < \xi_0 = \gamma \lambda (1 - \phi)$, the following identity premium function is sufficient to enforce cooperation for a provider in selling every but the last service:

$$f(L) = ((1 - \phi)\lambda - \xi/\gamma) \frac{1 - \lambda^L}{1 - \lambda} \text{ for } L > 0$$

For $\lambda = 1$, the identity premium function becomes:

$$f(L) = L (1 - \phi - \xi/\gamma) \text{ for } L > 0$$

(iii) Let N_h be the number of transactions a fully cooperative (honest) provider can participate till it is mistakenly blacklisted, and let N_c be the number of bad transactions an intentionally malicious provider can benefit from defecting until eliminated from the system, respectively. We have $E[N_h] > 1/\varepsilon^k$ and $E[N_c] < 1/(1 - \varepsilon)^k$.

The results (i,ii,iii) hold even in presence of strategic manipulation of ratings by agents.
Example

- original price $u=1$
- cheating gain 50% of original price
- Initial price 0.5 ($\Phi = 0.5$)

Limit price above original price: Acceptable to buyers?

Inefficiency?

Limit price below original price: Acceptable to sellers?
Eliminating Inefficiency

• If the cheating gain is sufficiently small and the dishonesty detector is sufficiently accurate the price remains bounded and can approach any limit price by properly choosing Φ
 – Thus for a finite number of services this inefficiency can be eliminated
 – For infinite number it can be kept extremely small (order of provisioning a few services)

• Rationale to accept the scheme
 – Providers: without premium no trade at all
 – Consumers: no risk if providers are rational (provably)
CONCLUSIONS
The Path Towards Trust

Problem
- Selfish Behavior
- Manipulation of Reports
- Strategic Behavior
- Whitewashing

Countermeasure
- Reputation
- Reputation of recommenders
- Sanctioning
- Identity Premium
From Closed to Open Trust

• So far trust managed in a closed system, but
• Multiple trust systems
 – Transferrable identity
 – Aggregate reputation from multiple sources
• Open Web
 – Semantic Web: content-based → entities
 • All Web content on Tim-Berners Lee
 – Social Web: friend-to-friend authentication
 • Social networks as computing substrate
 – Sensor Web: link the web to physical reality
 • Soft biometrics, GPS, ...
New Opportunities for Trust Systems

• Semantic, Social and Sensor Web not only help to build trust but are also in need of trust
 – Semantic Web: is the content trustworthy?
 – Social Web: are my social connections trustworthy?
 – SensorWeb: is the measured data reliable?
Thank you for your attention!

... and we will continue to keep you busy for a while
Acknowledgements

• Work sponsored by
 – Swiss National Science Foundation
 – EU FP 6, projects DIP, Nepomuk
 – NTT Docomo EuroLabs, Munich
Main Publications

